
LA-UR-22-20545
Approved for public release; distribution is unlimited.

Title: Large Program Design

Author(s): Ferenbaugh, Charles Roger

Intended for: SPEED lecture series, Tue 1/25/2022

Issued: 2022-01-24

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

11/20/22 11/20/22Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Large Program Design
SPEED Lecture Series

Charles Ferenbaugh, CCS-7

January 25, 2022

21/20/22 21/20/22

Myth: “Writing code is easy - anyone can do it!”
Reality: Only partly true – it depends on what kind of code you want
An analogy:

Most people could build this

31/20/22 31/20/22

Myth: “Writing code is easy - anyone can do it!”
Reality: Only partly true – it depends on what kind of code you want
An analogy:

But it’s much harder to build thisMost people could build this

41/20/22 41/20/22

Myth: “Writing code is easy - anyone can do it!”
Reality: Only partly true – it depends on what kind of code you want
An analogy:

But it’s much harder to build thisMost people could build thisNot just a bigger
doghouse

Not just a bunch of
doghouses put together

Needs to be designed

51/20/22 51/20/22

Small vs. large software projects
• It can be OK to just throw together code that is small, single-purpose, and
short-lived

• But there’s more need for good design if the code has to:

– Live longer
– Give highly reliable results

• Publications, deliverables, …
– Be easy to use
– Get bigger/cover more physics

• Complexity grows as N2

– Cover more application domains

– Have more users
– Have more widely-distributed users
– Have more developers work on it
– Run larger problems, on large

clusters
– Run on new architectures

(Cell, Xeon Phi, GPU, …)

61/20/22 61/20/22

Hazards of poorly-designed code

In a poorly-designed code, it is difficult to:
• Understand the code
• Maintain the existing features
• Add new features
• Bring new developers onto the code team
• Refactor the code to support GPUs or other advanced architectures

71/20/22 71/20/22

Basic principle for large codes: Hierarchical design

• How do you wrap your brain around a large software project?
• Best answer: group related parts of the code into packages in a hierarchy

Packages
Files in one

package

81/20/22 81/20/22

Separation of concerns

• Each package should have its own, specific area of functionality
− In general, don’t put unrelated things in one package
− Occasional exception: “utility” package

• This makes the code easier to understand and manage
− In many cases, fixing an issue or adding a feature will touch just one package, or a

small number of packages
− Makes it much easier to bring new team members on board!

91/20/22 91/20/22

Encapsulation

• A class or module should have a well-thought-out interface, through which
callers can interact with it

• The same holds, on a larger scale, for packages or libraries
− Design an application programming interface (API) for each package
− As long as the interface stays the same, you can modify or extend the package

implementation, without have to change calling packages
− Other developers can treat your package as a “black box” and not have to understand

its details

101/20/22 101/20/22

Composability

• Having a hierarchy of packages allows
you to build something big out of smaller
pieces

111/20/22 111/20/22

Composability

• Having a hierarchy of packages allows
you to build something big out of smaller
pieces

• Also allows flexibility in how each
package is implemented
− Swap out one implementation for another if

API is the same
− Put multiple implementations alongside

each other, such as:
§ Multiple models with similar APIs
§ Different implementations for CPU/GPU

− Write packages with different
languages/programming models if needed

121/20/22 121/20/22

Levelization

• Can assign level numbers to a
dependency graph iff the graph has
no cycles
− This avoids “circular dependencies”

• With levelized dependencies:
− Always have well-defined build order
− Can reuse a subgraph by itself if

needed (e.g., new product)
− Can test the system incrementally –

start from bottom, work up

• Applies to both packages and files
within a package

Level 1

Level 2

Level 3

Level 4

131/20/22 131/20/22

Build systems

• Packages in source tree become libraries
in build system

• Can always build packages in an order
that respects dependencies

• Can always construct a link line that
respects all package dependencies
− True for both the final product, and

incremental tests (next slide)
− Note: Link lines with libraries respect

ordering; link lines with .o files do not!

7 8 9

3 4 5

1 2

6

10

141/20/22 141/20/22

Testability

• A self-contained package can be
tested on its own, apart from the
larger project
− This is unit testing

• Subsets of packages can be tested
together during development, before
all packages are complete
− This is incremental integration testing

• Together these allow bugs to be found
earlier in development, when they’re
much easier to fix

151/20/22 151/20/22

Language specifics: C/C++

• Can use C++ language features to help with encapsulation
− Classes with inheritance, public/private data and functions, …
− Namespaces

• Can do similar things in C, but not as much language support
− Static data and functions to simulate “private”
− Or, comments to mark private data and functions (“honor system”)
− Package prefixes to simulate namespaces

161/20/22 161/20/22

Language specifics: Fortran

• Can use F90 modules to implement encapsulation
− Declare API functions/subroutines PUBLIC
− Declare implementation details PRIVATE

• Or, use F2003 OO features
− Define derived types, with inheritance and type-based routines
− Use PUBLIC and PRIVATE attributes as in C++
− Warning: Some programming models don’t play well with this (e.g., OpenMP offload)

171/20/22 171/20/22

Style guide

• It’s important to have consistency for names visible outside of a file/package
− Class names, function names

§ do_the_calc() vs. DoTheCalc() vs. doTheCalc() …
− File names and suffixes

§ #include<do_the_calc.hh> vs. #include<DoTheCalc.hpp> …

• It’s important to have internal consistency within a single file
− Indentation style and number of spaces
− Naming for local variables, local functions, …

• It is nice, but not as critical, for all files to have internal elements consistent
• If you modify an existing file, follow its style! Don’t impose your own
• If you contribute to an existing project, follow its style (documented or not!)

181/20/22 181/20/22

Style guide (cont’d)

• Be careful about using someone else’s style guide
− Their guide may have hidden assumptions that don’t apply to your project!
− May need to do tailoring
− Example: Google and C/C++ suffixes

191/20/22 191/20/22

Can you improve the design of a long-running project?

Yes! (with a lot of effort)
• EAP project made a major

effort in FY15-16
• Started with >20yr old code,

~470K SLOC
• In ~15 months, created ~40

packages, levelized
dependencies

• Formed the basis for further
code modernization work
(including GPU support) xrage Levelization Graph on 2016/01/11

0 circular dependencies, with no cycles.

Level 0:

Level 1:

Level 2:

Level 3:

Level 4:

Level 5:

Level 6:

Level 7:

Level 8:

Level 9:

Level 10:

Level 11:

Level 12:

Level 13:

Level 14:

Level 15:

Level 16:

Level 17:

Level 18:

Plasma

Timestep

11

Opacity

12

Solvers

2

Iso

139

Mesh

12

State

34

Sesame

31

Interpolators

15

Energy

29

421

Energy_Util

EOS

14

12

Matdef

367

84

IO

23

MaterialInterface

6

Diagnostic_Util

3

9

Util

Comm

87

Types

22

11

Gradients

9

Plasma_EOS

34

Util_basic

stub

52

build

18

483

Parser

51

PerfLib

9

75

Strength

11

6

118

18

2 21

711

Setup

HEexternal

3

Regions

801 SpicaCSG

336

Turbulence

3

3

3

9

206

26

Gravity

6

6 5

Freeze

6

HEBurn

314 5

Hydro

105

xRageDriver

Common_Util

3

Common

65

7623

Analysis

94

Analysis_Support

ExternalSRCs

3

3

Laser

3

15

Conduction

3

Radiation_diffusion

354

Radiation

9 Graphics

67

TNBurn

3

198228

388 15

6

6

doc

dump_reader

1

2016-01-11

xRage dependency graphs

2014-10-01

201/20/22 201/20/22

Resources

• Lakos, Large-Scale C++ Software Design
− Many of the principles apply to other languages, not just C++
− 1996 edition: language mechanisms are way outdated, principles still apply
− 2019 edition (volume 1 of 3): language mechanisms are hopefully more up-to-date?

• Feathers, Working Effectively with Legacy Code
− Principles for modernizing an existing code base

• Ferenbaugh et al., Modernizing a Long-Lived Production Physics Code,
SC16 poster (LA-UR-16-25446)
− More details on the xRage refactor

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-25446

211/20/22 211/20/22

Thanks for your attention!

Questions?

